
NEW MEXICO

Hobbs Industrial Air Park Site Readiness Report

December 2024

Table of Contents

PAGE 03

Site Overview

PAGE

09

Preliminary Conceptual Plan PAGE

12

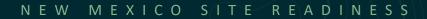
Site Selection Simulation Results

PAGE 45

Site Improvement
Opportunities

PAGE

50


Contact Information

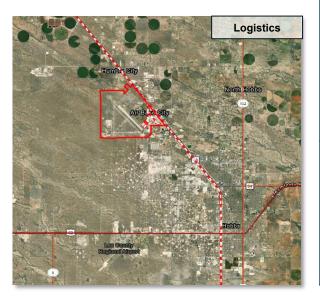
PAGE **52**

Appendix:
Preliminary
Conceptual Plan
Additional Material

PAGE **54**

Appendix: Tertiary
Criteria

Site Overview


Hobbs Industrial Air Park

Site Aerial HOBBS INDUSTRIAL AIR PARK

Site Characteristics

Hobbs Industrial Air Park Site Profile

Site Name: Hobbs Industrial Air Park

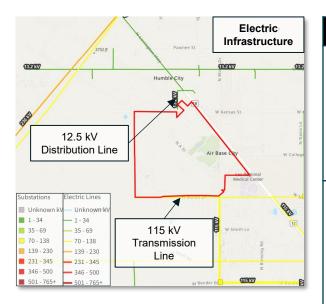
Location: Hobbs, Lea County, New Mexico

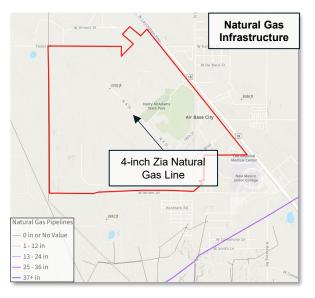
Total Acreage: +/- 2,724 acres, with 483 contiguous and developable.

Ownership: Publicly owned (1 owner – City of Hobbs); For Sale or Lease.

Zoning: Unzoned; Rezoning is not required.

Developability Impacts: FEMA shows the 100-year floodplain running throughout parts of the site, limiting developable and contiguous acreage. There are several existing uses on the site, including a golf course, campground, prison, and light industrial uses. There are easements for water, wastewater, and natural gas lines bisecting the site from northeast to southwest, all serving the prison on-site.


Due Diligence Studies Completed: No due diligence studies have been completed on the site.


Interstate: 93-mile drive south to the I-20 on-ramp.

Highway: Adjacent to the 4-lane highway NM-18.

Rail: An existing Watco shortline is located adjacent to the site along its northeastern border. To gain on-site rail access, the line would likely be extended to the northern acreage of the park, along the existing runway beds.

Site Utilities

Hobbs Industrial Air Park Site Profile

Electric: Site is served by Xcel Energy. There is an existing 12.5 kV distribution line along the site's northeastern border. The West Bender Substation is located approximately 2 miles from the site. Additionally, there is an existing adjacent 115 kV transmission line coming from Xcel Energy's Maddox Station, which is approximately 4 miles from the site. Discussions with Xcel energy indicate that there is potential for a dedicated solar or power generation facility at the site.

Natural Gas: Site is served by Zia Natural Gas Company. There is an existing 4-inch line with an operating pressure of 35 psi that bisects the site from the southwest to the northeast. This line stems from a 6-inch main line running along NM-18 that operates at 250 psi, adjacent to the northeast site boundary. Zia has indicated that the infrastructure in the area is likely to be able to accommodate a reasonable industrial load. Exact excess capacity and required infrastructure upgrades are currently unknown.

Water: Site is served by City of Hobbs. The site is served by well water. Fresh water is available, however, the water provider does not want to use freshwater for industrial operations. Excess capacities and improvements required to serve the site are currently unknown.

Wastewater: Site is served by the City of Hobbs. To serve the site, the existing wastewater system would need to be expanded for additional capacity. However, the wastewater provider is uncertain if they will accept industrial wastewater into the municipal system. Large users will require major upgrades.

Hobbs Industrial Air Park

Advantages:

- · Publicly owned site
- · Willing to sell or lease
- · Heavy power infrastructure around site
- · Zoning is not required
- Approximately 2700-acre site but some acreage is built out. There is also an inactive runway onsite.
- Site is adjacent to rail line with existing users utilizing a rail spur

Disadvantages:

- Proximity to recreational area, including golf course
- · No existing access roads into the site
- Utility capacities are unknown
- Site would require well water
- Wastewater is limited and major users would require significant upgrades
- · Portions of the site are in the flood zone
- No due diligence has occurred on the site; however, there has been due diligence on surrounding acreage (EnergyPlex)
- Remaining acreage is in close proximity to recreational use including a golf course and junior college.



Preliminary Conceptual Plan

Disclaimer: The following section was prepared by Gray Construction on behalf of GLS. GLS acknowledges Gray as the author of the content and does not take credit for the work presented in this document. An additional write-up provided by Gray is included in the Appendix.


PRELIMINARY EXISTING CONDITIONS

HOBBS INDUSTRIAL PARK

5654-5698 W JACK GOMEZ BLVD, HOBBS, NM 88240

1"=1800"

PRELIMINARY SITE LAYOUT

HOBBS INDUSTRIAL PARK

5654-5698 W JACK GOMEZ BLVD, HOBBS, NM 88240

Site Selection Simulation Results

Methodology

Below are the models used as proxies to represent several industry types. This allowed GLS to evaluate each site and their competitiveness without confining them and the community to any one industry for recommendations.

Labor-Intensive		
Capital Investment	\$50 – \$300 MM+	
Site		
Acreage	75 acres	
Transportation		
Rail	Not Required	
Truck Traffic	Required	
Utilities		
Electricity	5 MW	
Natural Gas	3 MCF/hour	
Water	75,000 GPD	
Wastewater	50,000 GPD	
Workforce		
Total Employment	400+	
Skill Requirement	Moderate to High	
Industry Examples		

- · Food manufacturing
- · Aerospace manufacturing
- Machinery manufacturing
- Plastics and rubber manufacturing

Capital-Intensive		
Capital Investment	\$250 -\$500 MM+	
Site		
Acreage	100 acres	
Transportation		
Rail	Preferred	
Truck Traffic	Required	
Utilities		
Electricity	100+ MW	
Natural Gas	50 MCF/hour	
Water	1 MGD	
Wastewater	500,000 GPD	
Workforce		
Total Employment	150+	
Skill Requirement	High	
Industry Examples		
Chemical Manufacturing		

Nonmetallic mineral product manufacturing

Primary metals manufacturing

component manufacturing

Electrical equipment, appliance +

COMPOSITE ANALYSIS

Methodology

Quality and cost scores were combined in a composite analysis that reveals the relative attractiveness of each site for the representative labor and capital-intensive projects based on factors outlined. It is important to note that results are relative to the project parameters and the sites in consideration; locations will score better or worse when compared to other locations and considered for other project types. All sites evaluated are in early phases of site readiness; it is expected that all will need to make site readiness improvements in order to compete against currently-marketed sites.

In the graph to the left, scores from the quality analysis are shown on the x-axis, from lowest score on the left to highest score on the right. The average score of is shown as a vertical line on the graph.

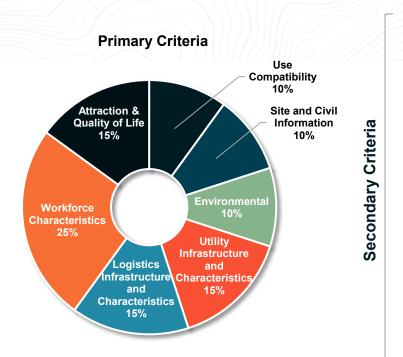
Estimated annual operating costs (unburdened payroll, water, wastewater, electricity, and natural gas) are shown on the y-axis, from highest cost on the bottom to lowest cost on the top. The average operating cost is shown horizontally.

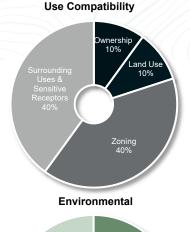
The goal of a community should be prioritizing site readiness improvements based on potential ROI. Opportunities to increase quality, decrease cost, and decrease risk will help to migrate a site to the upper righthand quadrant of this composite model.

Labor-Intensive		
Capital Investment	\$50 - \$300 MM+	
Site		
Acreage	75 acres	
Transportation		
Rail	Not Required	
Truck Traffic	Required	
Utilities		
Electricity	5 MW	
Natural Gas	3 MCF/hour	
Water	75,000 GPD	
Wastewater	50,000 GPD	
Workforce		
Total Employment	400+	
Skill Requirement	Moderate to High	
Industry Examples		

- Food manufacturing
- · Aerospace manufacturing
- · Machinery manufacturing
- · Plastics and rubber manufacturing

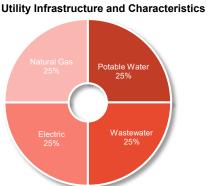
The requirements and drivers for a typical labor-intensive manufacturing project listed to the left are among the major considerations built into the competitiveness benchmarking.

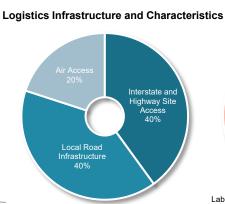

Siting requirements are minimal for typical labor-intensive manufacturing projects. As a result, sites that are shovelready will have the advantage, with permitting and construction timelines often condensed.


Site access and suitability of local road infrastructure for industrial traffic will be prioritized. Proximity to an interstate or high-quality highway will be a consideration. A specific project's unique supply chain drivers are likely to drive the search region for a general manufacturing project.

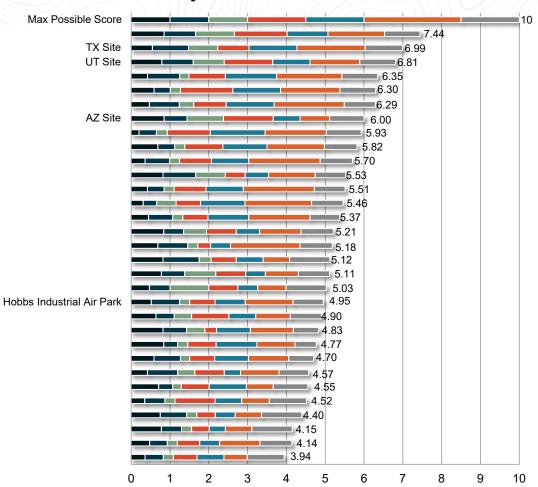
Electricity demands are moderate, while water and wastewater are primarily for domestic use. Natural gas requirements are typically minimal, and electricity or propane could be used as an alternative to a natural gas line.

Sites for this type of project will be more readily available across a search region. Consequently, workforce availability, quality, and costs, as well as community attributes, are likely to play a more significant role than for other projects.


QUALITY SCORING WEIGHTS



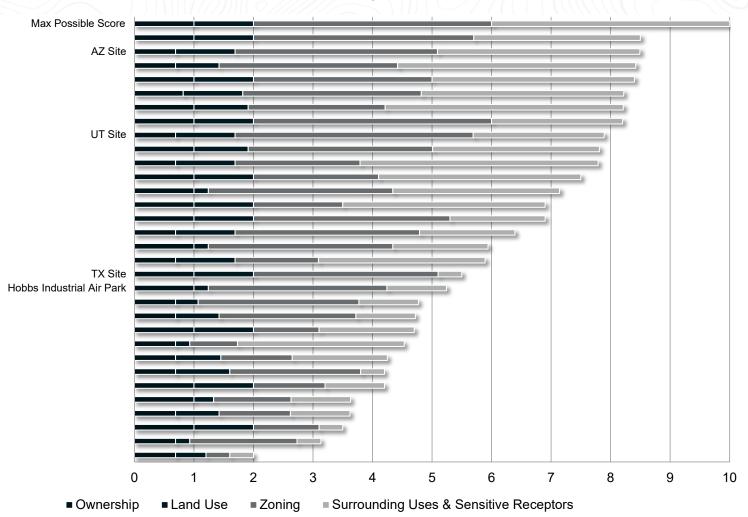
A quality model will be built specific to the attraction criteria important to a **representative a labor-intensive project profile**. Primary and secondary criteria and weights are shown here. Tertiary criteria scored within the model can be found in the appendix.



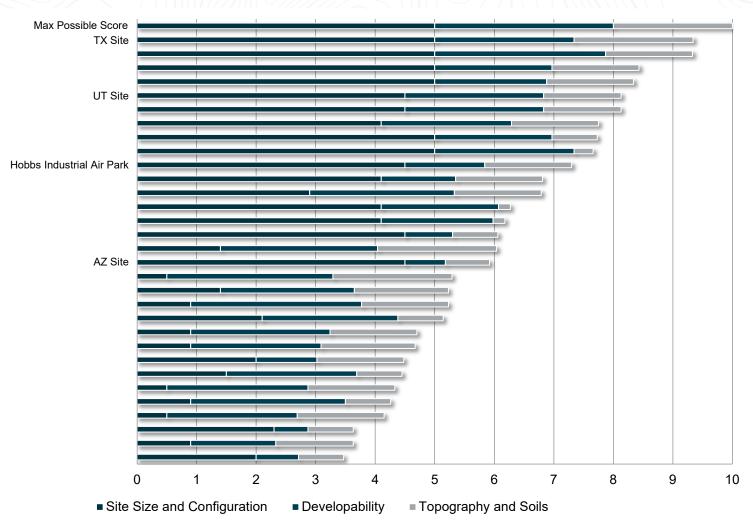
QUALITY ANALYSIS: RESULTS

Quality Scores

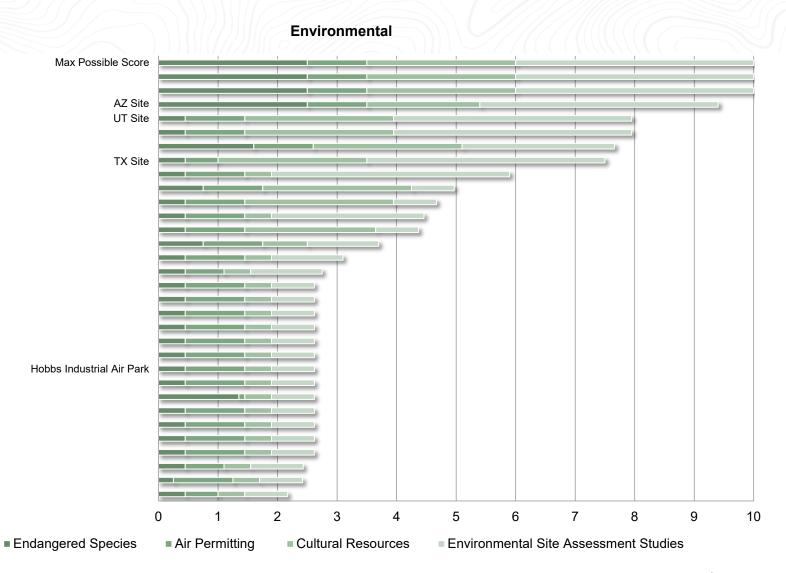
Overall quality score results are shown in the chart to the left. Secondary criteria charts are shown in subsequent slides.

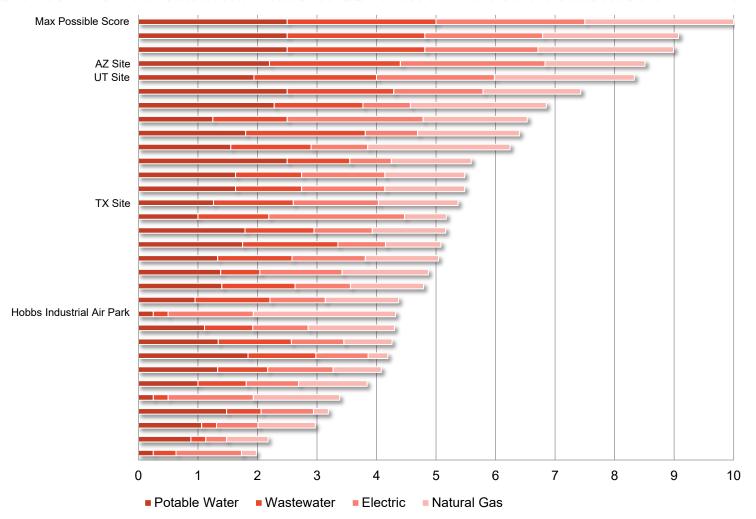

While there is significant differentiation between sites on the secondary criteria level, there is less differentiation when scores are considered comprehensively.

With limited differentiation on the primary category level, projects are more likely to prioritize site quality scores based on the secondary category level.

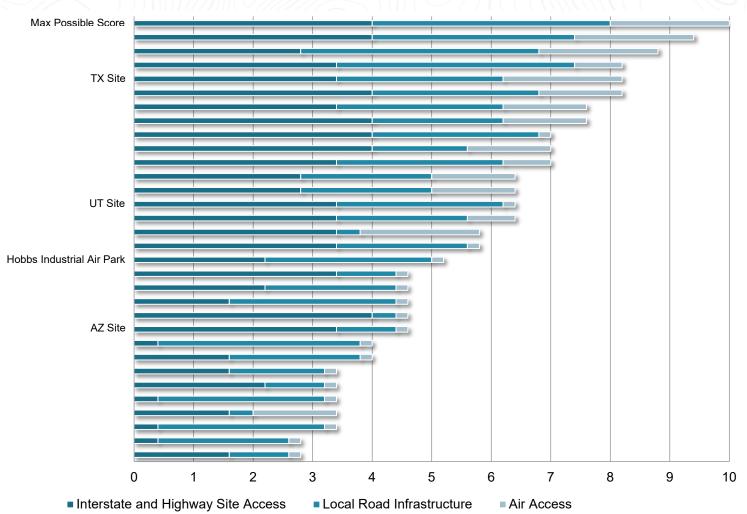

- Use Compatibility
- Environmental
- Logistics Infrastructure and Characteristics
- Attraction & Quality of Life

- Site and Civil Information
- Utility Infrastructure and Characteristics
- Workforce Characteristics

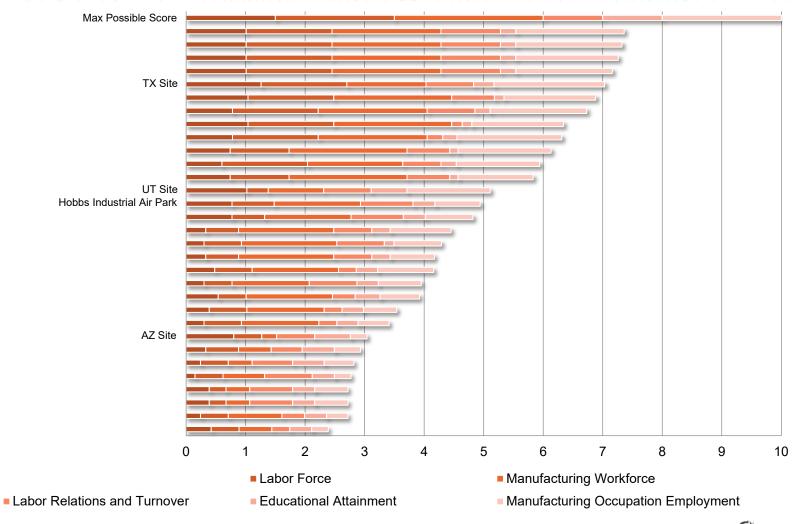

Use Compatibility


Site and Civil Information

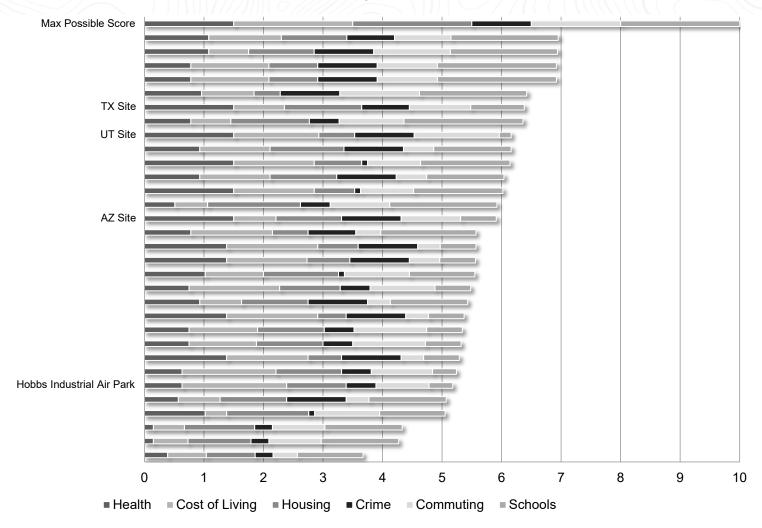
QUALITY ANALYSIS: RESULTS



Utility Infrastructure and Characteristics



QUALITY ANALYSIS: RESULTS


Logistics Infrastructure and Characteristics

Workforce Characteristics

Attraction & Quality of Life

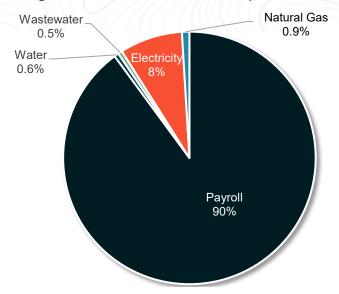
In addition to the quality models, operating and investment costs were estimated for each location.

To estimate wages, a staffing pattern for a typical laborintensive manufacturing project was created. The average wage for each Standard Occupational Classification (SOC) was determined for the 45-minute drive area surrounding the site.

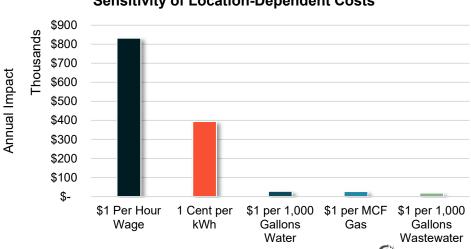
Water and wastewater rate schedules per 1,000 gallons were used where available; proxy rates (75th-percentile of provided rates, so \$6.56 for water and \$9.88 for wastewater) were used when on-site treatment was anticipated or when a rate was not provided or readily available on the municipality website.

To calculate annual project-specific electric bills, an August 2024 EIA Industrial Price was used for all locations. New Mexico's August 2024 EIA Industrial Price is \$5.05 per kWh.

To calculate annual project-specific natural gas bills, a 2022 EIA Industrial Price was used for all locations. New Mexico's 2022 EIA Industrial Price is \$9.62 per MCF.

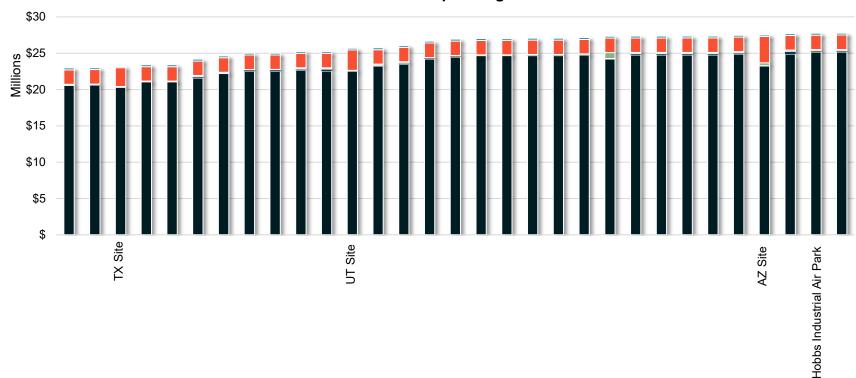

Of the operating costs considered, unburdened payroll is expected to be the most significant, followed by electricity.

This example shows that for every \$1 per hour increase in payroll, that adds an additional \$800+k per year in annual operating costs.

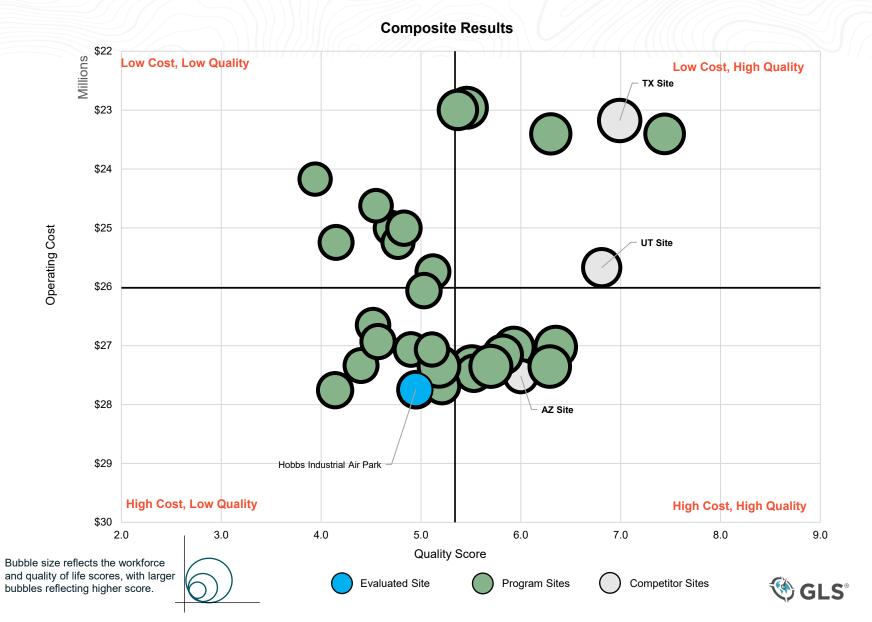

Logistics will be a significant, project-specific cost driver. These costs have not been estimated for this analysis.

FINANCIAL ANALYSIS: RESULTS

Average Distribution of Location-Dependent Costs

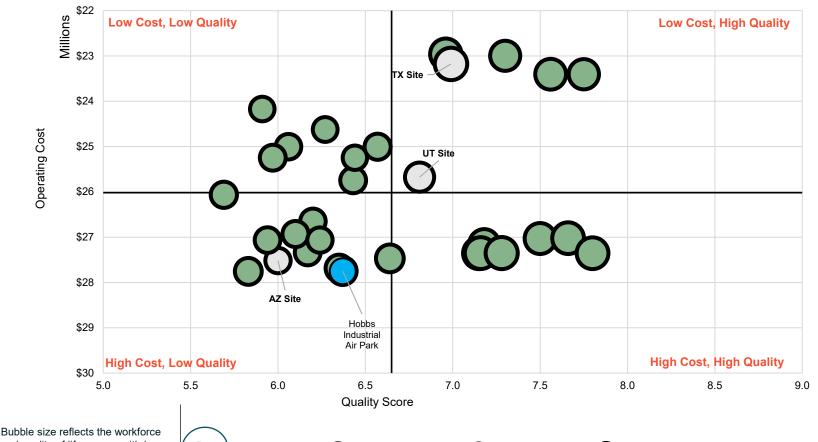


Sensitivity of Location-Dependent Costs



For the operating costs estimated, the difference between the highest and lowest-cost locations in New Mexico is approximately \$4.8 MM annually.

Annual Estimated Operating Cost



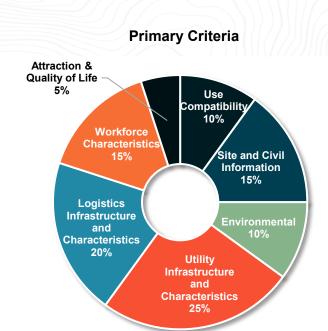
GLS®

The expectation is that the sites evaluated through this Site Identification program will require some level of site prep prior to marketing for industrial investment. Opportunities to advance each site towards investment readiness was identified, with a cost magnitude and the impact of each improvement determined. The updated composite model shows the new maximum possible score if all sites undergo all improvements that are feasible.

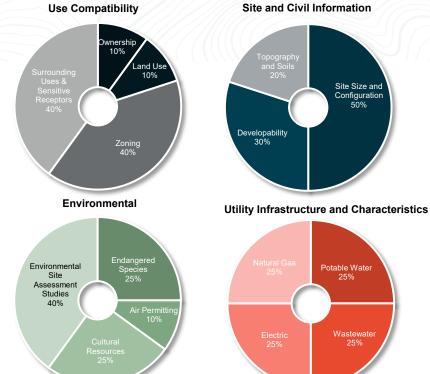
Composite Results After Improvements

Capital-Intensive		
Capital Investment	\$250 -\$500 MM+	
Site		
Acreage	100 acres	
Transportation		
Rail	Preferred	
Truck Traffic	Required	
Utilities		
Electricity	100+ MW	
Natural Gas	50 MCF/hour	
Water	1 MGD	
Wastewater	500,000 GPD	
Workforce		
Total Employment	150+	
Skill Requirement	High	
Industry Examples		

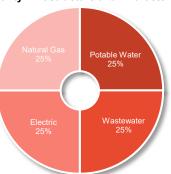
- Chemical Manufacturing
- · Nonmetallic mineral product manufacturing
- · Primary metals manufacturing
- Electrical equipment, appliance + component mfg

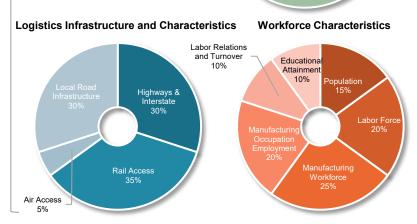

The requirements and drivers for a typical capital-intensive project listed to the left are among the major considerations built into the competitiveness benchmarking.

Siting requirements are more stringent than for a laborintensive or general manufacturing project. A large site, often with on-site rail service, is preferred. There will be fewer sites within a region that meet these requirements, and while investment readiness is a differentiating factor, expectations on site prep work are lower.


Capital-intensive projects typically require moderate to significant utility requirements. Electricity is needed in high quantities, and redundancy is preferred. Natural gas is often used in the manufacturing process and is needed in quantities that are not negligible. Access to water and wastewater is also a key factor for manufacturing projects.

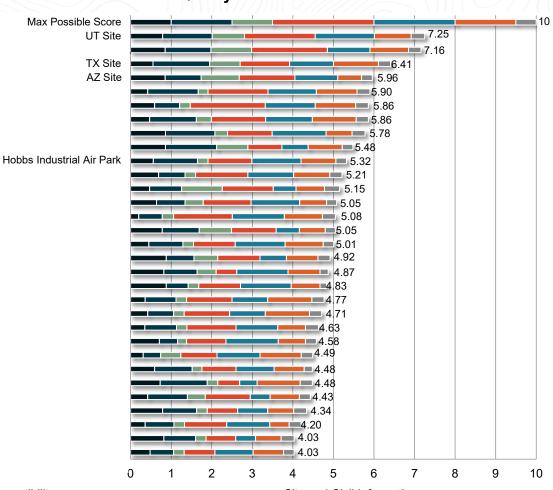
Identifying sites that meet a project's requirements is likely the first step in the site selection project. Workforce availability, quality, and costs are also important, but are more likely to be considered in detail after site alternatives begin to narrow.




QUALITY SCORING WEIGHTS

Site and Civil Information Site Size and Configuration 50% Developability 30%

A quality model was built specific to the attraction criteria important to a representative building products manufacturing project. Primary and secondary criteria and weights are shown here. Tertiary criteria scored within the model can be found in the appendix.


Secondary Criteria

Schools 20% Health Housing 20% Commuting 15%

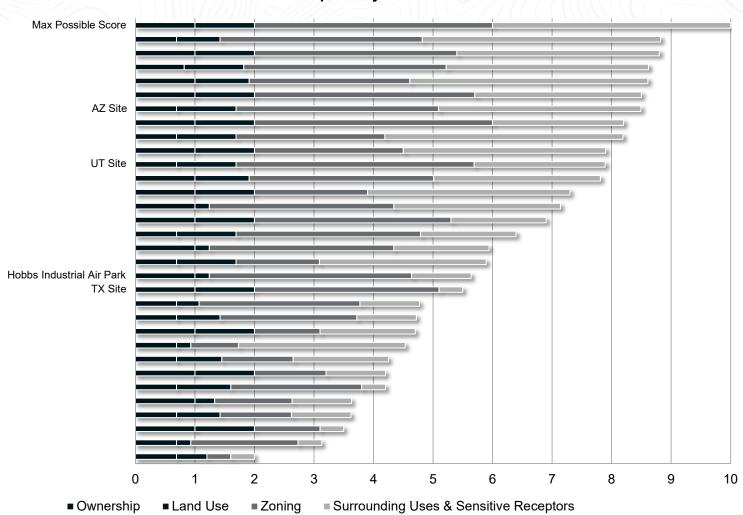
Attraction & Quality of Life

QUALITY ANALYSIS: RESULTS

Quality Scores

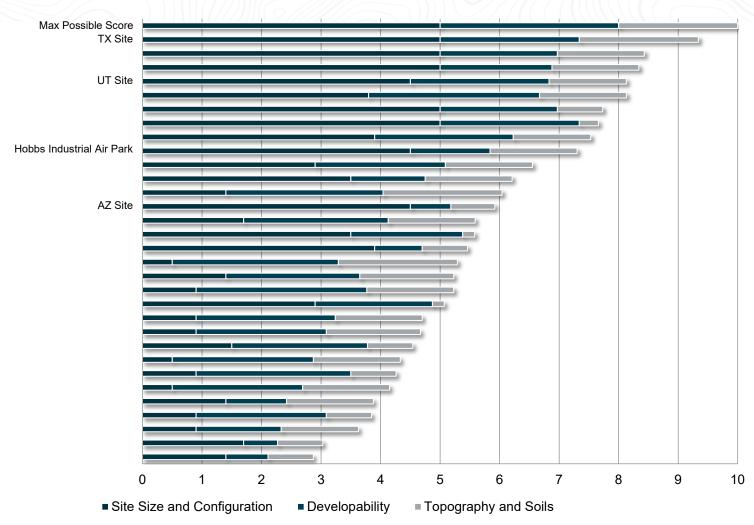
Overall quality score results are shown in the chart to the left. Secondary criteria charts are shown in subsequent slides.

While there is significant differentiation between sites on the secondary criteria level, there is less differentiation when scores are considered comprehensively.


With limited differentiation on the primary category level, projects are more likely to prioritize site quality scores based on the secondary category level.

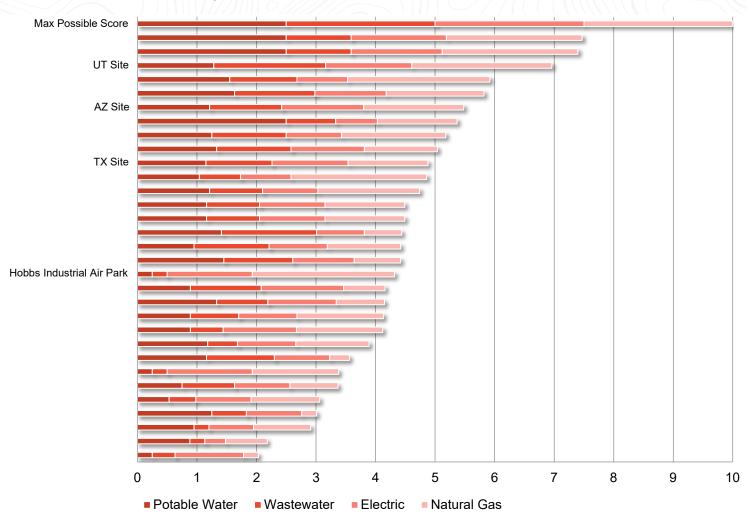
- Use Compatibility
- Environmental
- Logistics Infrastructure and Characteristics
- Attraction & Quality of Life

- Site and Civil Information
- Utility Infrastructure and Characteristics
- Workforce Characteristics

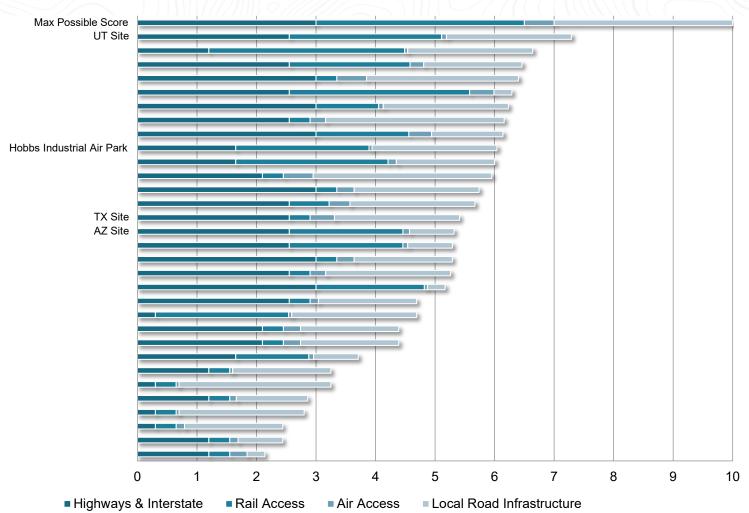

QUALITY ANALYSIS: RESULTS

Use Compatibility

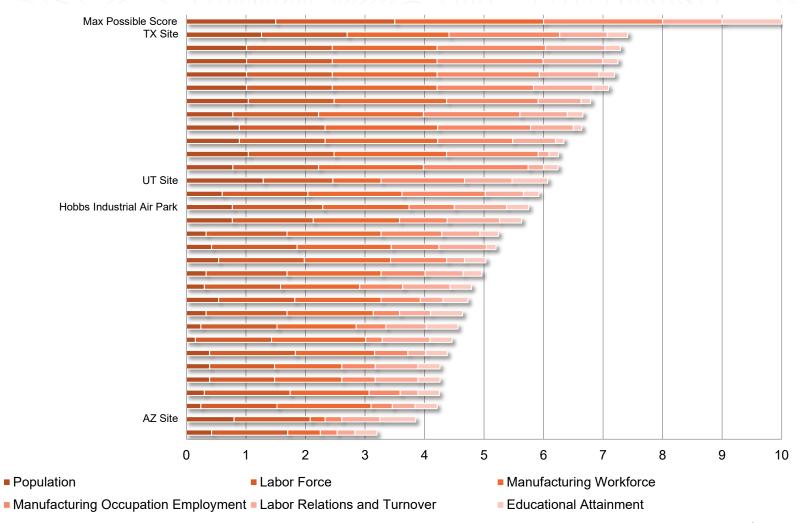
QUALITY ANALYSIS: RESULTS


Site and Civil Information

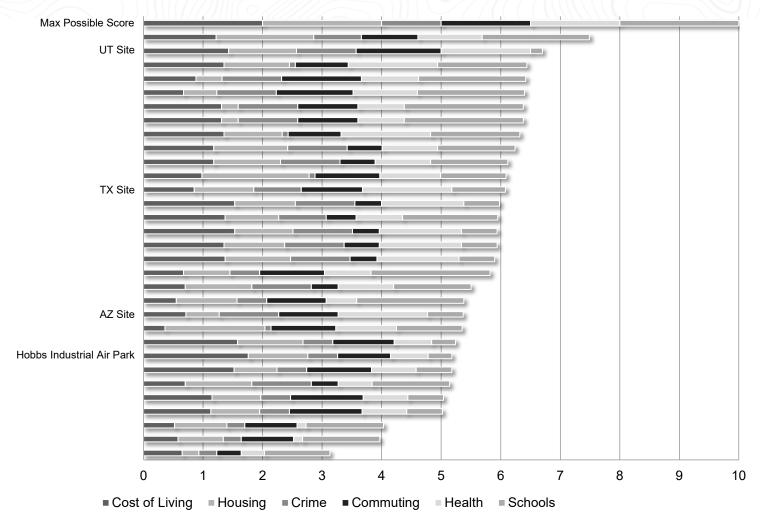
QUALITY ANALYSIS: RESULTS


Utility Infrastructure and Characteristics

Capital-Intensive


QUALITY ANALYSIS: RESULTS

Logistics Infrastructure and Characteristics



Capital-Intensive

QUALITY ANALYSIS: RESULTS

Attraction & Quality of Life

Capital-Intensive

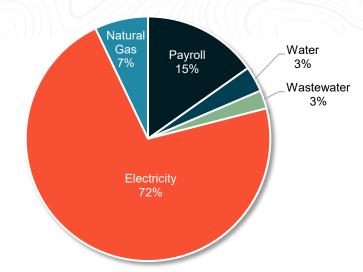
In addition to the quality models, operating and investment costs were estimated for each location.

To estimate wages, a staffing pattern for a typical capital-intensive manufacturing project was created. The average wage for each Standard Occupational Classification (SOC) was determined for the 45-minute drive area surrounding the site.

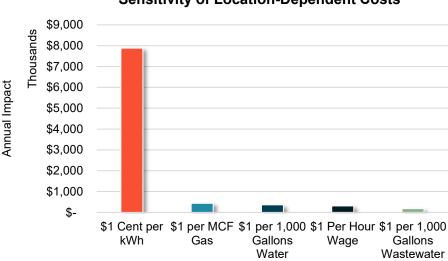
Water and wastewater rate schedules per 1,000 gallons were used where available; proxy rates (75th-percentile of provided rates, so \$6.56 for water and \$9.88 for wastewater) were used when on-site treatment was anticipated or when a rate was not provided or readily available on the municipality website.

To calculate annual project-specific electric bills, an August 2024 EIA Industrial Price was used for all locations. New Mexico's August 2024 EIA Industrial Price is \$5.05 per kWh.

To calculate annual project-specific natural gas bills, a 2022 EIA Industrial Price was used for all locations. New Mexico's 2022 EIA Industrial Price is \$9.62 per MCF.


Of the operating costs considered, electricity, unburdened payroll, and natural gas are expected to be the most significant.

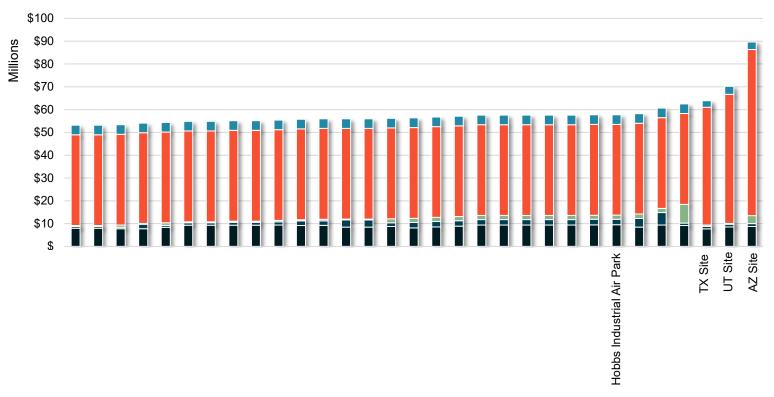
Electricity costs are a very sensitive location-dependent factor, with an additional one cent per kWh resulting in nearly \$8 MM additional cost per year.

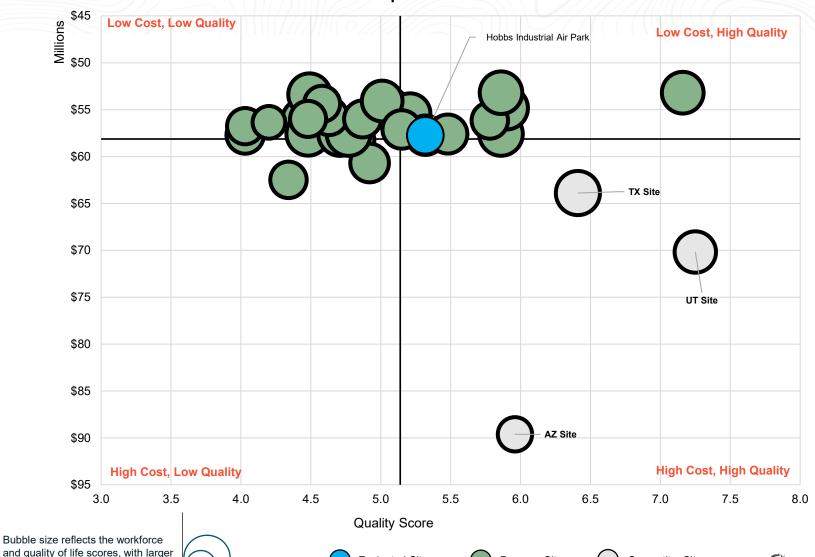

Logistics will be a significant, project-specific cost driver. These costs have not been estimated for this analysis.

FINANCIAL ANALYSIS: RESULTS

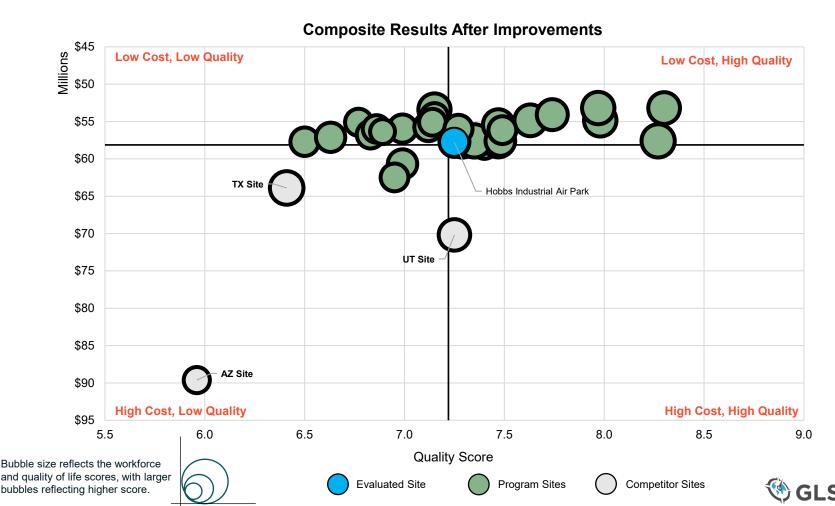
Average Distribution of Location-Dependent Costs

Sensitivity of Location-Dependent Costs




Capital-Intensive

For the operating costs estimated, the difference between the highest and lowest-cost locations in New Mexico is approximately \$9.3 MM annually.


Annual Estimated Operating Cost

Composite Results

Operating Cost

Site Improvement Opportunities

Hobbs Industrial Air Park

Gap + Impact Improvement Analysis

A gap and impact improvement analysis provides feedback on the items that can be completed to provide the biggest impact on the quality score of each site. Those items that are blank (-) indicate items that would not change the site score (already at max score), and those with "N/A" indicate items that are not drivers for that particular project model (labor versus capital).

Improvement Description	Cost Magnitude	Labor Intensive	Capital Intensive
Rezone to Industrial	-	-	-
Wetlands Delineation and Mitigation	\$\$	*	**
Raise site out of Floodplain	\$\$\$\$	**	***
Geotech Study with no significant findings	\$	*	**
Endangered Species study with no significant findings	\$	***	***
Archeological/Historical studies with no significant findings	\$	***	***
Phase 1 ESA with no significant findings	\$	****	****
75,000 GPD of Water Service	\$\$	***	N/A
1 MGD of Water Service	\$\$	N/A	***
50,000 GPD of Wastewater Service	\$\$	***	N/A
500,000 GPD of Wastewater Service	\$\$	N/A	***
5 MW of Electric Service	\$	*	N/A
100 MW of Electric Service	\$	N/A	*1
3 MCF/hour of Natural Gas Service	\$	**	N/A
50 MCF/hour of Natural Gas Service	\$	N/A	**
Improve Site Access	-	-	-
Extend Rail on site	\$\$	N/A	***

Recommendations

The most impactful improvement opportunities to advance the site towards investment readiness are as follows:

End-User Compatibility: The site has a large component of recreational use including a golf course. New Mexico Junior College also has a campus on site. The county envisions Hobbs Industrial as smaller users, ideally 10-20 acre parcels, that are comfortable near the surrounding use. This works well given that heavy industrial users can go on the adjacent EnergyPlex property. For Hobbs Industrial, continue to think through what types of light industry and end users could be a fit to target directly for the site.

<u>Utility Capacities:</u> Existing power and gas infrastructure is at the site. Utility capacities for electric, gas, water and wastewater are unknown at this time. With a site of this size, large utility demands are likely for end-users. Recommend working with utility providers to understand current capacity, and timelines, upgrades, and cost associated with servicing the site depending on various thresholds. Water and wastewater will be the most complex to solve for. The site will likely need to use a well for water and according to the county, wastewater is limited. Recommend understanding if county water and/or wastewater can be accommodated at the site.

Conduct Due Diligence Studies: To mitigate risk of the unknown for a project, it is recommended that due diligence studies be conducted on the site. While a Phase I ESA, Cultural Resources Study, and Endangered Species Study may be unlikely to result in significant findings, completion of these studies can bring a site significantly closer to a state of investment-readiness and increase its speed-to-market for a project. Since the EnergyPlex site has had due diligence completed, this is a way to show potential users what the results likely are but having reports specific to the site is ideal in risk-mitigation. Particularly since it is such a large site.

<u>Rail Service:</u> Texas New Mexico short line is adjacent the property and already serves tenants in the park. Recommend talking with rail provider to understand the viability (timeline and cost) of serving additional users and the ideal locations to extend additional rail into the park.

All Rights Reserved.

Global Location Strategies® and the GLS logo is a registered service mark of Global Asset Positioning LLC d/b/a Global Location Strategies, registered in the U.S.

Disclaimer.

This report is based in part on information not within Consultant's control. It is believed that the estimates and conclusions contained therein will be reliable under the conditions and subject to the qualifications set forth, however, Consultant does not warrant or guarantee their accuracy. Use of such report shall, therefore, be at the user's sole risk.

D I D I C A L D W E L L
President + CEO

Global Location Strategies
Tel. +1.864.918.3816
didicaldwell@glsconsults.com

S A R A H W H I T E Principal + VP Location Intelligence

Global Location Strategies
Tel. +1.864.420.6291
sarahwhite@glsconsults.com

S H E L B Y Z A R I C O R Senior Consultant

Global Location Strategies
Tel. +1.251.932.7668
shelbyzaricor@glsconsults.com

LINDSAY DIEHL Consultant

Global Location Strategies
Tel. +1.732.779.2786
lindsaydiehl@glsconsults.com

MATCHING
COMPANIES AND
COMMUNITIES FOR
LONG-TERM,
SUSTAINABLE
SUCCESS

Appendix

Preliminary Conceptual Plan Additional Material

HOBBS INDUSTRIAL AIR PARK

HOBBS LEA COUNTY 2,725.127 ACRES

The Hobbs Industrial Air Park property is located in Hobbs, New Mexico. This site is adjacent to EnergyPlex Park.

DEVELOPABILITY

The existing topography is flat with approximately 40 feet of elevational relief to the southeast.

There are 6.213 cumulative acres of wetlands on the property, and the site is not in a floodplain.

The prevalent soil type is loam. There is a moderate potential for corrosion of concrete, and a moderate potential for corrosion of steel. The depth to bedrock is unknown, but greater than 6.5 feet.

The site may be accessed from Jack Gomez Blvd that traverses through the property from N Lovington Way to the east.

UTILITIES

GIS utility mapping was not available.

- ELECTRIC infrastructure needed, service available
- NATURAL GAS infrastructure in place, service available
- WATER infrastructure in place, service available
- WASTEWATER infrastructure needed, service available

RECOMMENDATIONS

- Phase 1 ESA
- · Overall geotechnical study
- ALTA or boundary survey
- Topographic survey
- Private utility locate
- · Archaeological study (SHPO)

REFERENCES

Web Soil Survey - all soil information

FEMA - Firm number 35025C1165D

USGS - Digital Elevation Model used for existing topography

National Wetlands Inventory - all wetland information.

Property boundaries provided by the communities. Acreages are approximate.

COMMUNITY PROVIDED INFORMATION

Biological Resources Reconnaissance Survey Report from 2014

Existing Infrastructure Capacity Analysis from 2015

Floodplain Study and Mapping from 2015

gray.com

Tertiary Criteria

Use Compatibility

Secondary Criteria	Tertiary Criteria
Ownership	Number of Owners
	Control of Property
	Sale or Lease
	Current Land Use
Land Use	Most Recent Prior Use
	Existing Structures
Zoning	Current Zoning
	Height Restrictions
	Rezoning Process
Surrounding Uses & Sensitive Receptors	Surrounding Land Use Suitability
	Sensitive Receptors

Site and Civil Information

Secondary Criteria	Tertiary Criteria
Site Size and Configuration	Total Size
	Total Contiguous and Developable Acreage without Improvements
	Site Configuration
Topography and Soils	Impact From Soil Borings
	Topography
	Wetlands Delineation
Developability	Impact From Wetlands
	Impact From Floodplain
	Impact from Mineral Rights
	Nearby Airport Impact

Environmental

Secondary Criteria	Tertiary Criteria
Endangered Species	Endangered Species Study
	Endangered Species Study Impact
Air Permitting	Air Quality Attainment
	Class 1 Areas
	Proximity to Major Air Emitter
Environmental Site Assessment Studies	Phase I ESA
	Phase I Findings Impact
Cultural Resources	Cultural Resources Study
	Cultural Resources Impact

Utility Infrastructure and Characteristics

Secondary Criteria	Tertiary Criteria
Potable Water	Potable Water Availability
	Potable Water Distance
	Water Line Size
	Water Line Capacity
	Ability to Serve
	Complexity to Serve
	Wastewater Availability
Wastewater	Wastewater Distance
	Wastewater Line Size
	Wastewater Excess Capacity
	Ability to Serve
	Complexity to Serve

Utility Infrastructure and Characteristics

Secondary Criteria	Tertiary Criteria
Electric	Electric Supply
	Distribution Line Distance
	Construction Power
	Existing Capacity to Serve
	New Infrastructure Required to Serve
Natural Gas	Natural Gas Availability
	Natural Gas Distance
	Natural Gas Distribution Line Size
	Ability to Serve
	Complexity of Upgrades to Serve

Logistics Infrastructure and Characteristics

Secondary Criteria	Tertiary Criteria
Highways & Interstate	Distance to Interstate
	Distance to 4-Lane Highway
Rail Access	Direct Rail Service
	Type of Carrier
	Direct Rail Service Type
	Rail Extension Distance
Air Access	Airport Commercial
	Runway Access
Local Road Infrastructure	Site Access Improvement Significance
	Route Suitability

Secondary Criteria	Tertiary Criteria
Population	Population Size
	Population Annual Average Growth Rate
	Median Age
	Population 25-44 Years %
	Total Workforce Size (16 and older)
	Labor Force Participation Rate (16 and older) %
Labor Force	Unemployment – Most Recent Available %
	Prime Age Labor Force Participation Size (22-54 years old)
	Prime Age Labor Force Participation Rate (22-54 years old) %
	Manufacturing Turnover %
Manufacturing Workforce	Location Quotient - Manufacturing
	Manufacturing Employment

Secondary Criteria	Tertiary Criteria
Manufacturing Occupation Employment	Employment - Production Occupations 51-0000
	5 Year Percent Change Employment Production Occupations 51-0000
	Employment - Architecture + Engineering Occupations 17-0000
	5 Year Percent Change Employment - Architecture + Engineering Occupations 17-0000
	Employment - General and Operations Managers 11-1020
	5 Year Percent Change Employment - General + Operations Managers
	Employment - Installation Maintenance + Repair Occupations 49-0000
	5 Year Percent Change Employment - Installation Maintenance + Repair Occupations 49-0000
Labor Relations and Turnover	Manufacturing Turnover %
	Manufacturing Union Membership

Secondary Criteria	Tertiary Criteria
	No High School Diploma
Educational Attainment	High School Graduate
	Some College or Associates Degree
	Bachelor's Degree
	Postgraduate Degree

Attraction and Quality of Life

Secondary Criteria	Tertiary Criteria
Schools	K-12 Pupil-Teacher Ratio within County
Scribbis	K-12 Spending per Pupil within County
	Median Household Income
Cost of Living	Poverty Level %
Cost of Living	Per Capita Income
	Home Price to Income Ratio
	Total Housing Units
Housing	Homeowner Vacancy %
riousing	Rental Vacancy %
	Median House Value
Crime	Violent Crimes per 1,000 Residents
	Mean Commuting Time (Minutes)
Commuting	Worked In Region of Residence %
	Worked Outside Region of Residence %
Health	Percent of County in Poor or Fair Health
Healul	Primary Physicians (number)